Fourier-laplace Transform of a Variation of Polarized Complex Hodge Structure

نویسندگان

  • Claude Sabbah
  • C. SABBAH
چکیده

— We show that the Fourier-Laplace transform of a regular holonomic module over the Weyl algebra of one variable, which generically underlies a variation of polarized Hodge structure, underlies itself an integrable variation of polarized twistor structure. Résumé (Transformation de Fourier-Laplace d’une variation de structure de Hodge complexe polarisée) Nous montrons que le transformé de Fourier-Laplace d’un module holonome régulier sur l’algèbre de Weyl, sous-jacent génériquement à une variation de structure de Hodge polarisée, est lui-même sous-jacent à une variation intégrable de structure de twisteur polarisée.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FOURIER-LAPLACE TRANSFORM OF A VARIATION OF POLARIZED COMPLEX HODGE STRUCTURE, II by

— We show that the limit, by rescaling, of the ‘new supersymmetric index’ attached to the Fourier-Laplace transform of a polarized variation of Hodge structure on a punctured affine line is equal to the spectral polynomial attached to the same object. We also extend the definition by Deligne of a Hodge filtration on the de Rham cohomology of a exponentially twisted polarized variation of comple...

متن کامل

Fourier-laplace Transform of a Variation of Polarized Complex Hodge

— We show that the limit, by rescaling, of the ‘new supersymmetric index’ attached to the Fourier-Laplace transform of a polarized variation of Hodge structure on a punctured affine line is equal to the spectral polynomial attached to the same object. We also extend the definition by Deligne of a Hodge filtration on the de Rham cohomology of a exponentially twisted polarized variation of comple...

متن کامل

Fourier-laplace Transform of Flat Unitary Connections and Terp Structures

We show that if the Stokes matrix of a connection with a pole of order two and no ramification gives rise, when added to its adjoint, to a positive semi-definite Hermitian form, then the associated integrable twistor structure (or TERP structure, or non-commutative Hodge structure) is pure and polarized.

متن کامل

Thermo-Viscoelastic Interaction Subjected to Fractional Fourier law with Three-Phase-Lag Effects

In this paper, a new mathematical model of a Kelvin-Voigt type thermo-visco-elastic, infinite thermally conducting medium has been considered in the context of a new consideration of heat conduction having a non-local fractional order due to the presence of periodically varying heat sources. Three-phase-lag thermoelastic model, Green Naghdi models II and III (i.e., the models which predicts the...

متن کامل

Fractional Order Generalized Thermoelastic Functionally Graded Solid with Variable Material Properties

In this work, a new mathematical model of thermoelasticity theory has been considered in the context of a new consideration of heat conduction with fractional order theory. A functionally graded isotropic unbounded medium is considered subjected to a periodically varying heat source in the context of space-time non-local generalization of three-phase-lag thermoelastic model and Green-Naghdi mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007